

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

15 September 2025
Week 4, Day 1-2

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Mental Maths

Complete the missing numbers.

a) $7^2 + 4^3 =$

d) $5^2 + \underline{\hspace{1cm}} = 89$

g) $3^2 + \underline{\hspace{1cm}} = 5^2$

j) $10^3 - 2^2 =$

b) $8^2 + 10^2 =$

e) $\underline{\hspace{1cm}} - 8^2 = 17$

h) $6^3 \div 2^2 =$

k) $100^2 =$

c) $5^3 - 5^2 =$

f) $3^2 \times 2^3 =$

i) $13^2 =$

l) $\underline{\hspace{1cm}}^2 = 144$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

GCSE/iGCSE Assessment Objective Specification – Foundation/Higher

<input checked="" type="checkbox"/> A identify square numbers and cube numbers	C use index notation for positive and negative integer powers (including zero)	$a \times a \times a = a^3$
<input checked="" type="checkbox"/> B calculate squares, square roots, cubes and cube roots		$a^{-5} = \frac{1}{a^5}; a^0 = 1$
C use index notation and index laws for multiplication and division of positive and negative integer powers including zero	D use index laws in simple cases	$x^m \times x^n = x^{m+n}$ $x^m \div x^n = x^{m-n}$ $(x^m)^n = x^{mn}$

C use index laws to simplify and evaluate numerical expressions involving integer, fractional and negative powers

Evaluate:

$$\sqrt[3]{8^2}, 625^{-\frac{1}{2}}, \left(\frac{1}{25}\right)^{\frac{3}{2}}$$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Key Concept

02:00

$$4^6 \times 4^2 = 4^8$$

$$4^5 \times 4^{-5} = 4^?$$

$$\frac{4^7}{4^7} = ?$$

Why is
 $4^0 = 1$?

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Key Concept

02:00

Law 1: Product Law

$$a^m a^n = a^{m+n}$$

When multiplying two powers with the same base, just add the indices.

Example:

$$1.) q^2 \cdot q \cdot q^3 = q^{2+1+3}$$
$$= q^6$$

$$2.) 3^4 \cdot 3^5 \cdot 3 = 3^{4+5+1}$$
$$= 3^{10}$$

$$3.) 4 (4^4)(4^7) = 4^{1+4+7}$$
$$= 4^{12}$$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Key Concept

02:00

Law 2: Quotient Law

$$\frac{a^m}{a^n} = a^{m-n}$$

When dividing two powers with the same base, just subtract the indices.

Example:

$$1.) \frac{9^3}{9} = 9^{3-1} = 9^2 = 81$$

$$2.) \frac{4^2 \cdot 4^3}{4^3} = \frac{4^{2+3}}{4^3} = \frac{4^5}{4^3} = 4^2 = 16$$

$$3.) \frac{4^9}{4^9} = 4^{9-9} = 4^0 = 1$$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Key Concept

02:00

Law 3: Power Law

$$(a^m)^n = a^{mn}$$

To simplify any power of power, simply multiply the indices.

Example:

$$\begin{aligned} 1.) (3^2)^3 &= 3^{2 \times 3} \\ &= 3^6 \end{aligned}$$

$$\begin{aligned} 2.) (2^2)^2 &= 2^{2 \times 2} \\ &= 2^4 \boxed{= 16} \end{aligned}$$

$$\begin{aligned} 3.) (2 \cdot 2^2)^3 &= (2^3)^3 \\ &= 2^9 \end{aligned}$$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Key Concept

02:00

Powers with different bases

$$a^n b^n = (ab)^n$$

To simplify power of different bases, simply multiply the indices on each base.

Example:

$$1.) (2^2 \cdot 3^2) = 6^2$$

$$= 36$$

$$2.) (3^3 \cdot 1^3) = 3^3$$

$$= 27$$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Mini- Plenary

05:00

Unsimplified Expression	Index Law	Simplified Expression
n^{-2}	Multiply the exponents	n^{12}
$7m^{12} \div 7m^8$		$9n^6$
$n^0 + 2$		m^8
$9m^4 \times 2m^4$	Write as a fraction and change the sign	$16n^2$
$(3n^3)^2$		1
$4n^2 \times 4n^4$	Simplify expression to 1	$\frac{1}{n^2}$
$(m^2)^4$		$18m^8$
$n^{16} \div n^4$	Add the exponents	$16n^6$
n^0		3
$32n^4 \div 2n^2$	Subtract the exponents	n^4

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

GCSE/iGCSE Assessment Objective Specification – Foundation/Higher

<input checked="" type="checkbox"/> A identify square numbers and cube numbers	<input checked="" type="checkbox"/> C use index notation for positive and negative integer powers (including zero)	$a \times a \times a = a^3$
<input checked="" type="checkbox"/> B calculate squares, square roots, cubes and cube roots		$a^{-5} = \frac{1}{a^5}; a^0 = 1$
<input checked="" type="checkbox"/> C use index notation and index laws for multiplication and division of positive and negative integer powers including zero	<input checked="" type="checkbox"/> D use index laws in simple cases	$x^m \times x^n = x^{m+n}$ $x^m \div x^n = x^{m-n}$ $(x^m)^n = x^{mn}$

C use index laws to simplify and evaluate numerical expressions involving integer, fractional and negative powers

Evaluate:

$$\sqrt[3]{8^2}, 625^{-\frac{1}{2}}, \left(\frac{1}{25}\right)^{\frac{3}{2}}$$

Core Task

LO: To use index notation for multiplying and dividing.

Task 1:

Simplify each expression.

1) $(7^4)^8 = \underline{\hspace{2cm}}$

2) $3^7 \cdot 3^7 = \underline{\hspace{2cm}}$

3) $\frac{4^3}{4^3} = \underline{\hspace{2cm}}$

4) $2^6 \cdot 2^5 = \underline{\hspace{2cm}}$

5) $\frac{5^3}{5^8} = \underline{\hspace{2cm}}$

6) $5^7 \cdot 8^7 = \underline{\hspace{2cm}}$

7) $(2^4)^5 = \underline{\hspace{2cm}}$

8) $3^7 \cdot 3^7 = \underline{\hspace{2cm}}$

9) $6^8 \cdot 6^0 = \underline{\hspace{2cm}}$

10) $\frac{3^5}{3^5} = \underline{\hspace{2cm}}$

Task 2:

10:00

The following statements are all INCORRECT.

1. Identify the mistake.

2. Correct.

3. Justify (show) your reasoning.

a) $2^5 = 10$

b) $(-2)^3 = 8$

c) $-6^2 = 36$

d) $x^0 = 0$

e) $x^3 \cdot x^4 = x^{12}$

f) $\frac{x^{10}}{x^5} = x^2$

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Extension

Find the correct path through the maze. You can only move horizontally and vertically one square at a time.

$2^6 \times 2^3$	$3^2 \times 2^3$	$(\sqrt{16})^2$	$(2^3)^3$	$8^3 \div 8$	$4^4 \times 4^{-3}$	$(\sqrt[3]{8})^4$	8×4^2
$\sqrt{8}^3$	$(2^3)^2$	$8^7 \times 8^{-5}$	4^3	$2^{-2} \times 2^7$	64^0	$2^5 \times 2^3$	$4^7 \div 2^3$
$(\sqrt{64})^3$	8^2	$2^2 \times 2^3$	$2^3 \times 2^3$	$(2^3)^3$	$(\sqrt[3]{8})^6$	$4^6 \times 4^{-3}$	$2^2 \times 4^2$
2^6	$(\sqrt{64})^2$	$4^6 \times 4^{-2}$	$(\sqrt{16})^3$	$(2^2)^4$	$8^3 \div 2^3$	$2^{-3} \times 2^7$	$(2^2)^4$
3^5	$2^6 \times 2^1$	8^3	$4^5 \div 2^4$	$(-4)^{-3}$	$(2^2)^3$	$(\sqrt{8})^3$	$4^6 \div 2^6$
$4^3 \times 4^{-3}$	$(2^5)^1$	$(\sqrt[3]{64})^2$	$2^3 \times 8$	$2^{-1} \times 2^7$	$(\frac{1}{4})^{-3}$	16^2	64

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

GCSE/iGCSE Assessment Objective Specification – Foundation/Higher

<input checked="" type="checkbox"/> A identify square numbers and cube numbers	<input checked="" type="checkbox"/> C use index notation for positive and negative integer powers (including zero)	$a \times a \times a = a^3$
<input checked="" type="checkbox"/> B calculate squares, square roots, cubes and cube roots		$a^{-5} = \frac{1}{a^5}; a^0 = 1$
<input checked="" type="checkbox"/> C use index notation and index laws for multiplication and division of positive and negative integer powers including zero	<input checked="" type="checkbox"/> D use index laws in simple cases	$x^m \times x^n = x^{m+n}$ $x^m \div x^n = x^{m-n}$ $(x^m)^n = x^{mn}$

<input checked="" type="checkbox"/> C use index laws to simplify and evaluate numerical expressions involving integer, fractional and negative powers	Evaluate: $\sqrt[3]{8^2}, 625^{-\frac{1}{2}}, \left(\frac{1}{25}\right)^{\frac{3}{2}}$
---	---

LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Plenary

05:00

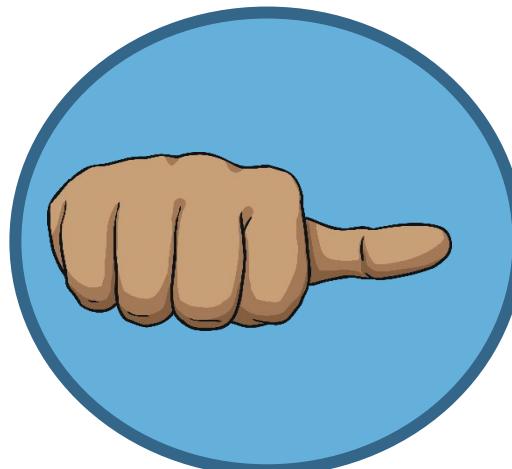
Work out the following problem
with your groupmates.

Write each calculation as a single power.

a $\frac{4^2 \times 4^8}{4^3}$

b $\frac{7^{12}}{7^2 \times 7^6}$

c $\frac{5^6 \times 5^6}{5^7 \times 5}$


LAWS OF INDICES

LO: To use index notation for multiplying and dividing.

Self Check

Secure

Met

Working
Towards