



# ALGEBRAIC INDICES

**LO: To apply the laws of indices  
in simplifying expressions.**

**17 September 2025**  
**Week 4, Day 3-4**



# ALGEBRAIC INDICES

LO: To apply the laws of indices in simplifying expressions.

## Laws of Indices - True or False?

Level 1 Level 2 Level 3 Level 4 Exam-Style Game Description Help More Indices

Arrange the given statements involving indices to show whether they are true or false.

**TRUE**

$\frac{x^7}{x^3} \equiv x^4$

$x^8 \div x^4 \equiv x^2$

$x^2 \times x^3 \equiv x^5$

$x^8 \div x^5 \equiv x^3$

$(x^3)^4 \equiv x^{12}$

$(x^3)^4 \equiv x^7$

$\frac{x^6}{x^3} \equiv x^2$

**FALSE**

[Clear](#) [Refresh Page](#)

03:00

Mental  
Math

<https://www.transum.org/Maths/Activity/Algebra/Indices.asp?Level=1>



# ALGEBRAIC INDICES

LO: To apply the laws of indices in simplifying expressions.

## GCSE/iGCSE Assessment Objective Specification – Foundation/Higher

|                                                                                                                                                                       |                                                                                                                           |                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> <b>A</b> identify square numbers and cube numbers                                                                                 | <input checked="" type="checkbox"/> <b>C</b> use index notation for positive and negative integer powers (including zero) | $a \times a \times a = a^3$                                                  |
| <input checked="" type="checkbox"/> <b>B</b> calculate squares, square roots, cubes and cube roots                                                                    |                                                                                                                           | $a^{-5} = \frac{1}{a^5}; a^0 = 1$                                            |
| <input checked="" type="checkbox"/> <b>C</b> use index notation and index laws for multiplication and division of positive and negative integer powers including zero | <input checked="" type="checkbox"/> <b>D</b> use index laws in simple cases                                               | $x^m \times x^n = x^{m+n}$<br>$x^m \div x^n = x^{m-n}$<br>$(x^m)^n = x^{mn}$ |

**A** use index notation involving fractional, negative and zero powers

**C** use index laws to simplify and evaluate numerical expressions involving integer, fractional and negative powers

Evaluate:

$$\sqrt[3]{8^2}, 625^{-\frac{1}{2}}, \left(\frac{1}{25}\right)^{\frac{3}{2}}$$



# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

## Starter

05:00

$$p^3 \times p^x = p^9$$

(a) Find the value of  $x$ .

$100^a \times 1000^b$  can be written in the form  $10^w$

(c) Show that  $w = 2a + 3b$

$$(7^2)^y = 7^{10}$$

(b) Find the value of  $y$ .



# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

## Starter - Answers

$$p^3 \times p^x = p^9$$

$$\begin{aligned}3 + 6 &= 9 \\x &= 6\end{aligned}$$

(a) Find the value of  $x$ .

$$(7^2)^y = 7^{10}$$

$$\begin{aligned}2 \times 5 &= 10 \\x &= 5\end{aligned}$$

(b) Find the value of  $y$ .

$100^a \times 1000^b$  can be written in the form  $10^w$

(c) Show that  $w = 2a + 3b$

$$\begin{aligned}100^a &= 10^{2a} \\1000^b &= 10^{3b} \\10^{2a} + 10^{3b} &= 10^w \\ \text{Bases are same,} \\ \text{equate the powers} \\ 2a + 3b &= w\end{aligned}$$



# ALGEBRAIC INDICES

LO: To apply the laws of indices in simplifying expressions.

02:00

## Law 1: Product Law

$$a^m a^n = a^{m+n}$$

$$\begin{aligned}1.) & a^3 b^2 \cdot ab \\&= a^{3+1} b^{2+1} \\&= a^4 b^3 \\2.) & 2x^3 y^2 \cdot 4x y^3 \\&= 8x^4 y^5\end{aligned}$$

## Law 2: Quotient Law

$$\frac{a^m}{a^n} = a^{m-n}$$

$$\begin{aligned}3.) & \frac{10a^3 b}{2b} \\&= 5a^3 \\4.) & \frac{-20x^4 y^3}{4x^4 y^2} \\&= -5y\end{aligned}$$

When multiplying two powers with the same base, just add the indices.

When dividing two powers with the same base, just subtract the indices.



# ALGEBRAIC INDICES

LO: To apply the laws of indices in simplifying expressions.

02:00

## Law 3: Power Law

$$(a^m)^n = a^{mn}$$

$$\begin{aligned} 5.) & (a^3 b^2)^3 \\ &= a^9 b^6 \\ 6.) & (2^2 a^3 x^4)^2 \\ &= 2^4 a^6 x^8 \\ &= 16 a^6 x^8 \end{aligned}$$

## Powers with different bases

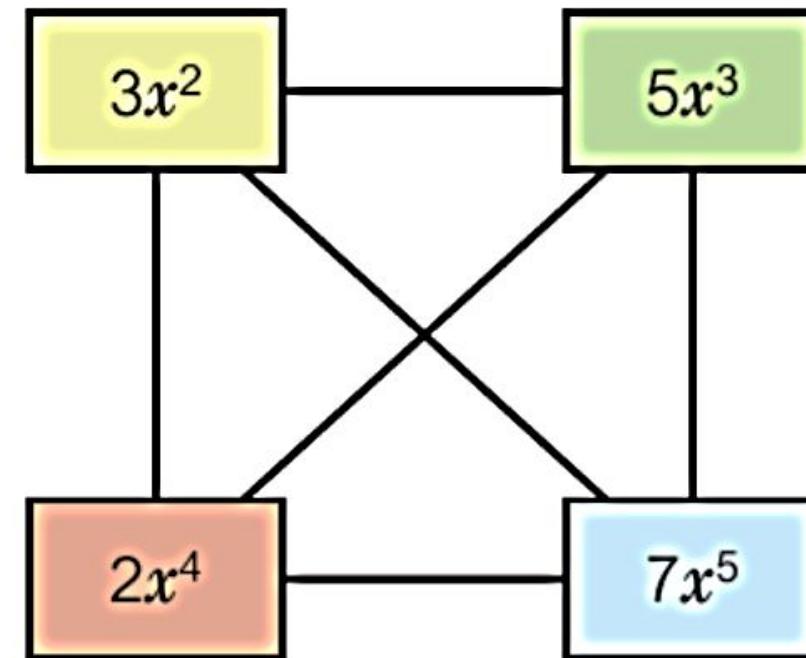
$$\begin{aligned} 7.) & a^2 x^2 z^2 = (axz)^2 \\ 8.) & (3^2 a^2 b^3 y^2) = b (3ab)^2 \end{aligned}$$

$$a^n b^n = (ab)^n$$

To simplify any power of power, simply multiply the indices.

To simplify power of different bases, simply multiply the indices on each base.




# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

## Mini Plenary

05:00

Multiply each pair of expressions linked by a line.





# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

## Mini Plenary - Answers

Multiply each pair of expressions linked by a line.

$$3x^2 \times 5x^3 = 15x^5$$

$$3x^2 \times 7x^5 = 21x^7$$

$$3x^2 \times 2x^4 = 6x^6$$

$$5x^3 \times 7x^5 = 35x^8$$

$$5x^3 \times 2x^4 = 10x^7$$

$$7x^5 \times 2x^4 = 14x^9$$



## Least Common Multiple(LCM)

LO: To find the least common multiple using Venn diagram.

### GCSE/iGCSE Assessment Objective Specification – Foundation/Higher

|                                                                                                                                                                       |                                                                                                                           |                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> <b>A</b> identify square numbers and cube numbers                                                                                 | <input checked="" type="checkbox"/> <b>C</b> use index notation for positive and negative integer powers (including zero) | $a \times a \times a = a^3$<br>$a^{-5} = \frac{1}{a^5}; a^0 = 1$             |
| <input checked="" type="checkbox"/> <b>B</b> calculate squares, square roots, cubes and cube roots                                                                    | <input checked="" type="checkbox"/> <b>D</b> use index laws in simple cases                                               | $x^m \times x^n = x^{m+n}$<br>$x^m \div x^n = x^{m-n}$<br>$(x^m)^n = x^{mn}$ |
| <input checked="" type="checkbox"/> <b>C</b> use index notation and index laws for multiplication and division of positive and negative integer powers including zero |                                                                                                                           |                                                                              |

**A** use index notation involving fractional, negative and zero powers

**C** use index laws to simplify and evaluate numerical expressions involving integer, fractional and negative powers

Evaluate:

$$\sqrt[3]{8^2}, 625^{-\frac{1}{2}}, \left(\frac{1}{25}\right)^{\frac{3}{2}}$$



# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

Simplify

a  $x^7 \times x^9 = x^{\square}$

b  $z^{12} \div z^4 = z^{\square}$

c  $(v^4)^2 = v^{\square}$

**Task 1:**

Work out the missing power.

a  $y^2 \times y^{\square} = y^8$

b  $n^{\square} \div n^3 = n^6$

c  $(w^{\square})^3 = w^{18}$

**CORE  
TASK**

**Task 2:**

Simplify

a  $\frac{12a^8}{4a^3} = 3a^{\square}$

d  $\frac{18t^5}{3t^4}$

b  $\frac{25b^7}{5b^4}$

e  $\frac{3p^5 \times 8p^3}{2p}$

c  $\frac{30n^3}{6n}$

f  $\frac{5x^3 \times 6x}{3x}$



# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

**Problem-solving** This is part of Teri's homework.  
Her pen has leaked ink onto her page.  
Work out the numbers underneath the blobs of ink.

## Task 3:

Simplify these.

a 
$$\frac{5y^5 \times 9y^3}{3y} = \boxed{y^2}$$

b 
$$\frac{4y \times \boxed{y^7}}{6y^5} = 8y^4$$

Simplify

a 
$$(4x^2)^2 = 4^2 \times (x^2)^2 = \boxed{4}x^{\boxed{4}}$$

b 
$$(2y^3)^2$$

c 
$$(3z^4)^3$$

d 
$$\left(\frac{x^2}{4}\right)^3 = \frac{(x^2)^3}{4^3} = \frac{x^6}{\boxed{64}}$$

e 
$$\left(\frac{y^4}{7}\right)^2$$

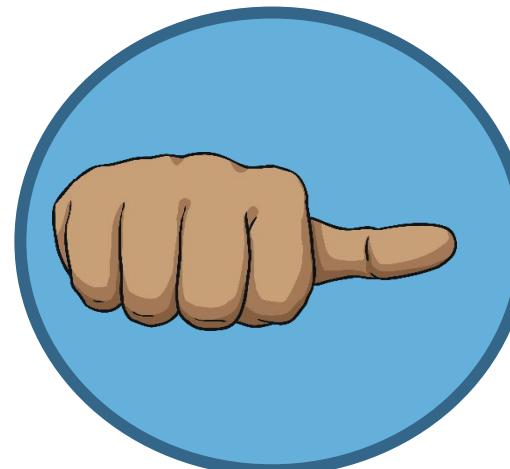
f 
$$\left(\frac{z^5}{3}\right)^3$$

## Challenge

**Discussion** Which of these are the same?

$$(4x^2)^2 \quad -4x^4 \quad -(4x)^4 \quad (-4x^2)^2 \quad 4x^4$$




# ALGEBRAIC INDICES

**LO: To apply the laws of indices in simplifying expressions.**

## Self Check



Secure



Met



Working  
Towards