

Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

Mental Math

1 Solve these equations.

a $2a - 4 = 2$

b $10 - 2x = 5$

c $\frac{3y}{5} = -6$

2 If $a = 3$ and $b = -2$ find

a ab

b $a + b$

c $3a - 2b$

d $a(2 + b)$.

Equations Involving Formulae

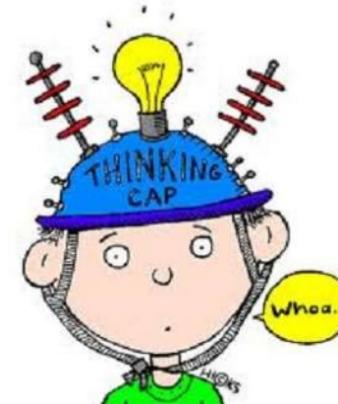
LO: Rearrange subject and solve
problems involving worded
formulae.

Mental Math

1 a $a = 3$

b $x = 2.5$

c $y = -10$


2 a -6

b 1

c 13

d 0

Mental Math

Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

Here is a rectangle.

$2x$ cm

3 cm

Starter

05:00

- a Write down and simplify an expression for the perimeter of the rectangle.
- b Copy and complete the formula for calculating perimeter P .
$$P = \square + 6$$
- c The perimeter of the rectangle is 34 cm.
Work out the length of the longest side.

Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

Here is a rectangle.

$2x$ cm

3 cm

Starter

- a $4x + 6$
- b $P = 4x + 6$
- c $x = 7$ cm so longest side = 14 cm

- a Write down and simplify an expression for the perimeter of the rectangle.
- b Copy and complete the formula for calculating perimeter P .
 $P = \square + 6$
- c The perimeter of the rectangle is 34 cm.
Work out the length of the longest side.

Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

GCSE/iGCSE Assessment Objective Specification – Foundation/Higher

A understand that symbols may be used to represent numbers in equations or variables in expressions and formulae

D use formulae from mathematics and other real-life contexts expressed initially in words or diagrammatic form and convert to letters and symbols

C find the area of simple shapes using the formulae for the areas of triangles and rectangles

A understand the process of manipulating formulae or equations to change the subject, to include cases where the subject may appear twice or a power of the subject occurs

Key Concept

10:00

What is a Formula?

- A formula is a fact or rule that uses mathematical symbols.

It will usually have:

- an equals sign (=)
- two or more **variables** (x, y, etc) that stand in for values we don't know yet

*It shows us how things are related to each other.

Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

Mini-Plenary

02:00

These are all equations, but only some are formulas:

$$x = 2y - 7$$

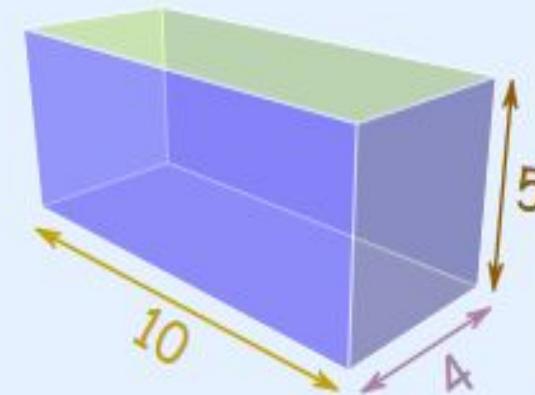
$$a^2 + b^2 = c^2$$

$$x/2 + 7 = 0$$

Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

Key Concept


Example: The formula for finding the volume of a box is:

$$V = lwh$$

V stands for volume, **l** for length, **w** for width, and **h** for height.

When $l=10$, $w=4$, and $h=5$, then:

$$V = 10 \times 4 \times 5 = 200$$

Key Concept

LO: Rearrange subject and solve problems involving worded formulae.

Steak cooking instructions

Medium Roast

25 mins per 450g + 25mins

Tariffs

Tariff #1

Minimum cost: £

Then £0.20 every 12.50 metres

Then £0.20 every 89.20 metres

All Year, All Day

These are all real-life examples of using worded formulae

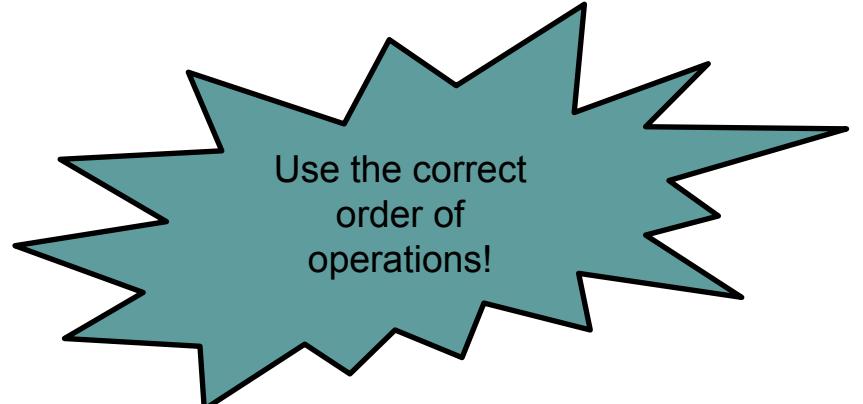
Tip-Up Concrete Mixers

LOW TRADE PRICE

1ST DAY	EXTRA DAY	WEEKEND	WEEK
£20.34	£10.17	£25.43	£40.68
£10.00	£5.00	£12.50	£20.00

My Turn

LO: Rearrange subject and solve problems involving worded formulae.


Here is a rule to work out the time it takes to cook a piece of meat.

$$\text{Time in minutes} = 36 \times \text{weight in kg} + 30$$

A piece of meat has a weight of 4 kg.

(a) Use the rule to work out the time, in minutes, it takes to cook this piece of meat.

$$\begin{aligned}\text{Time in minutes} &= 36 \times 4 + 30 \\ &= 144 + 30 \\ &= 174 \text{ minutes}\end{aligned}$$

Use the correct order of operations!

My Turn

LO: Rearrange subject and solve problems involving worded formulae.

Here is a rule to work out the time it takes to cook a piece of meat.

$$\text{Time in minutes} = 36 \times \text{weight in kg} + 30$$

It takes 192 minutes to cook a different piece of meat.

(b) Work out the weight of this piece of meat.

$$192 = 36 \times \text{weight in kg} + 30$$

$$-30 \qquad \qquad \qquad -30$$

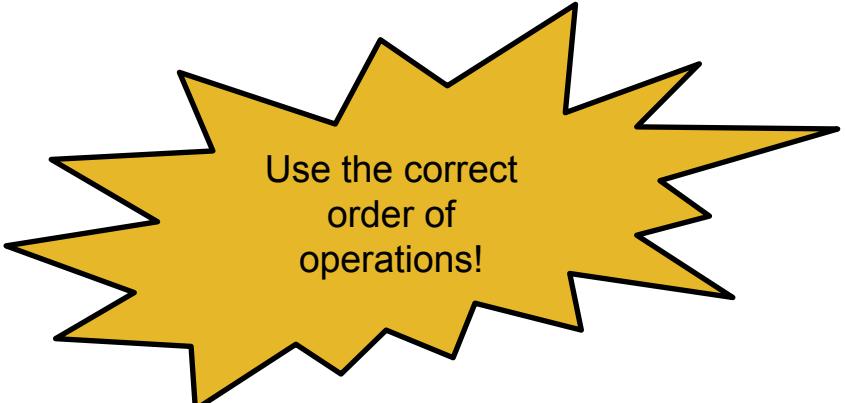
$$162 = 36 \times \text{weight in kg}$$

$$\div 36 \qquad \div 36$$

$$4.5 = \text{weight in kg}$$

Your Turn

LO: Rearrange subject and solve problems involving worded formulae.


This rule can be used to work out the time, in minutes, it takes to make microchips.

02:00

$$\text{Time} = \text{number of microchips} \div 20 + 4$$

(a) Work out the time it takes to make 100 microchips.

$$\begin{aligned}\text{Time} &= 100 \div 20 + 4 \\ &= 5 + 4 \\ &= 9 \text{ minutes}\end{aligned}$$

Use the correct order of operations!

Your Turn

LO: Rearrange subject and solve problems involving worded formulae.

This rule can be used to work out the time, in minutes, it takes to make microchips.

02:00

$$\text{Time} = \text{number of microchips} \div 20 + 4$$

(b) Work out the greatest number of microchips that can be made in 60 minutes.

$$60 = \text{number of microchips} \div 20 + 4$$
$$-4 \qquad \qquad \qquad -4$$

$$56 = \text{number of microchips} \div 20$$
$$\times 20 \qquad \qquad \qquad \times 20$$

$$1120 = \text{number of microchips}$$

Core Task

LO: Rearrange subject and solve problems involving worded formulae.

Task 1:

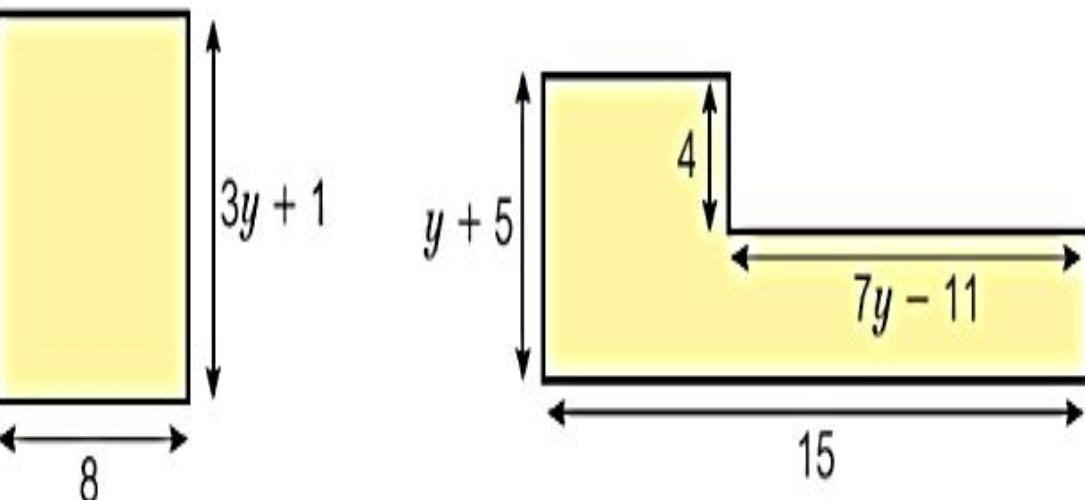
STEM A formula you can use to work out the distance, s , a car has travelled in metres is

$$s = ut + \frac{1}{2}at^2$$

where: u is the starting speed in metres per second
 a is the acceleration in metres per second 2
 t is the time in seconds.

Work out the distance the car has travelled when

a $u = 0, a = 2$ and $t = 10$


b $u = 13, a = 3$ and $t = 4$

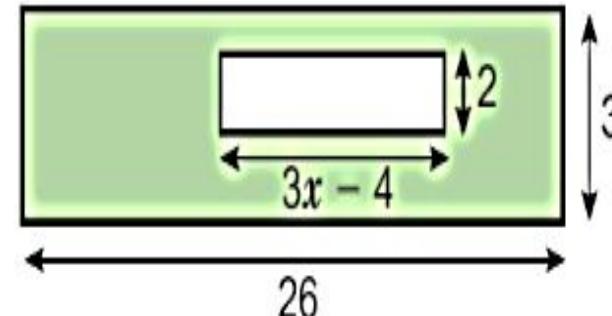
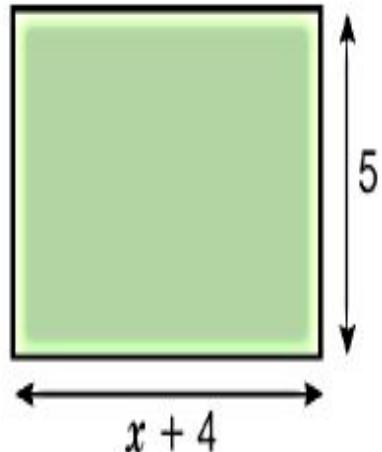
c $u = 25, a = -4$ and $t = 8$.

Task 2:

10:00

In this diagram the yellow shapes have the same area.

Work out the value of y .



Equations Involving Formulae

LO: Rearrange subject and solve problems involving worded formulae.

Task 3:

Problem-solving

- a In this diagram the green shapes have the same area.

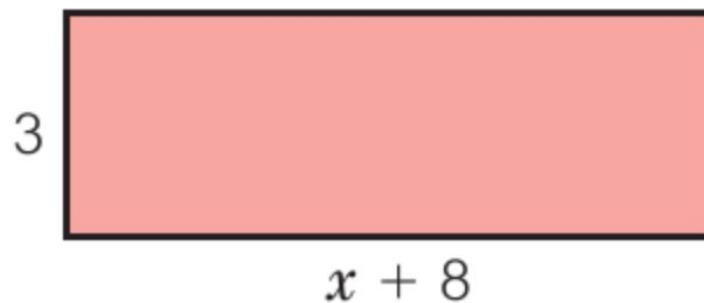
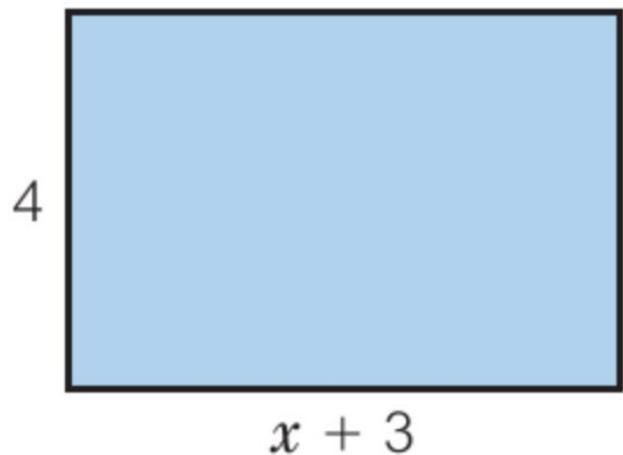
Work out the value of x .

Extension:

Make the indicated variable the subject of each formula:

$$(1) c = \sqrt{x - y} \quad (y)$$

$$(2) \sqrt{\left(\frac{f}{m}\right)} = p \quad (m)$$



Plenary

LO: Rearrange subject and solve problems involving worded formulae.

Plenary

05:00

These two rectangles have the same area.

Work out the value of x .

$$x = 12$$